Note
Go to the end to download the full example code. or to run this example in your browser via Binder
Create Triangulated Surface#
Create a surface from a set of points through a Delaunay triangulation.
Note
We will use a filter from PyVista to perform our triangulation: delaunay_2d.
import numpy as np
import pyvista as pv
Simple Triangulations#
First, create some points for the surface.
# Define a simple Gaussian surface
n = 20
x = np.linspace(-200, 200, num=n) + np.random.uniform(-5, 5, size=n)
y = np.linspace(-200, 200, num=n) + np.random.uniform(-5, 5, size=n)
xx, yy = np.meshgrid(x, y)
A, b = 100, 100
zz = A * np.exp(-0.5 * ((xx / b) ** 2.0 + (yy / b) ** 2.0))
# Get the points as a 2D NumPy array (N by 3)
points = np.c_[xx.reshape(-1), yy.reshape(-1), zz.reshape(-1)]
points[0:5, :]
Now use those points to create a point cloud PyVista data object. This will
be encompassed in a pyvista.PolyData
object.
# simply pass the numpy points to the PolyData constructor
cloud = ...
cloud.plot(point_size=15)
Now that we have a PyVista data structure of the points, we can perform a
triangulation to turn those boring discrete points into a connected surface.
See pyvista.UnstructuredGridFilters.delaunay_2d()
.
help(cloud.delaunay_2d)
Apply the delaunay_2d
filter.
surf = ...
# And plot it with edges shown
surf.plot(show_edges=True)
Clean Edges & Triangulations#
# Create the points to triangulate
x = np.arange(10, dtype=float)
xx, yy, zz = np.meshgrid(x, x, [0])
points = np.column_stack((xx.ravel(order="F"), yy.ravel(order="F"), zz.ravel(order="F")))
# Perturb the points
points[:, 0] += np.random.rand(len(points)) * 0.3
points[:, 1] += np.random.rand(len(points)) * 0.3
# Create the point cloud mesh to triangulate from the coordinates
cloud = pv.PolyData(points)
cloud
cloud.plot(cpos="xy")
Run the triangulation on these points
surf = cloud.delaunay_2d()
surf.plot(cpos="xy", show_edges=True)
Note that some of the outer edges are unconstrained and the triangulation
added unwanted triangles. We can mitigate that with the alpha
parameter.
surf = cloud.delaunay_2d(alpha=...)
surf.plot(cpos="xy", show_edges=True)